
Lesson 2.4: The Precise Definition of a Limit

Find a number such that:

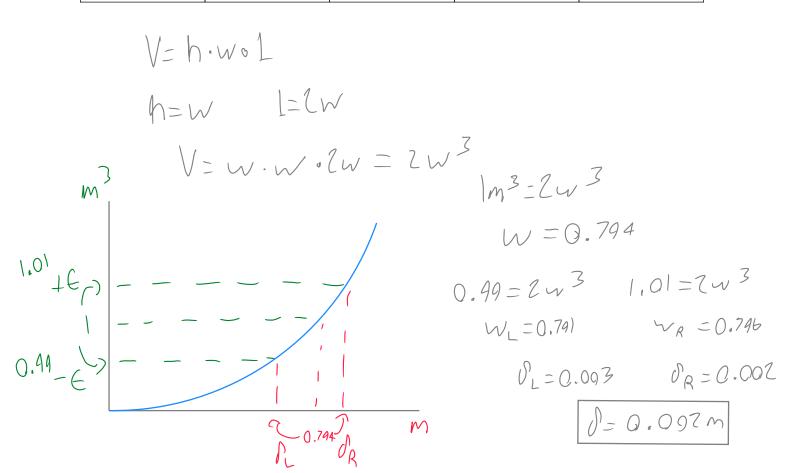
If
$$0 < |x - 3| < \delta$$
 then $|\frac{1}{x} - \frac{1}{3}| < \frac{1}{6}$

L	3	а	δ	f(x)
1/3	1/6	3	1	1/2

The growth of the population of eagles can be modeled using the function:

$$f(t) = 5ln([t + 2.72]^2)$$

Where t is the time in years. A conservationist wants to know when the population will reach 25 in order to begin transporting eagles to prevent overpopulation. If it is allowable for the population to be within 3 of this number, how far from the target date can the conservationist begin relocating eagles?


L	ε	а	δ	f(x)
25	3	9.5	3.2	5/n([+1.72]2)

A manufacturing company has an order to produce rectangular containers with the following parameters:

- The capacity of the crates should be 1000L (1m³)
- · The height and width should be equal
- · The length should be twice the width

Suppose the client has agreed to a 1% tolerance in the volume of the crate. Calculate the δ for the width in order to remain compliant with the client's demands.

L	3	а	δ	f(x)
)	0.01	0.794	0.007	2 w 3

